BC= 1215 given and we have to find out the length of AB By similarity in the above triangle we can easily say that

 $\frac{X}{20} = \frac{1215}{60}$ So x = 405 metres

A
B

$$a = \frac{AB}{BP}$$

In $\Delta ABQ = \tan \beta = \frac{AB}{BQ}$
BP= AB cot α
BQ= AB cot β
Where AB = Pole length
Let PQ= b
Therefore,
b= BQ - BP
b= AB cot α - AB cot β
AB = $\frac{b}{cot\beta - cot \alpha}$

Sol.3.(c)

Tan 30° = $\frac{AB}{AC}$ AC=12 $\sqrt{3}$ AC= BM MC = 12m Now, in \triangle BMD Tan 60° = $\frac{DM}{BM}$ DM=12 $\sqrt{3} \times \sqrt{3}$ = 36 Now, height of the hill = 36 + 12 =48m

Day: 18th

Let OA be straight tower. P, Q, R and S are points on the roads due north, east, south and west respectively. In \triangle POQ and \triangle ORS $PQ^2 = PO^2 + OQ^2$ $RS^2 = OR^2 + OS^2$ $\frac{(PQ)^2}{(RS)^2} = \frac{PO^2 + OQ^2}{OR^2 + OS^2}$ So $\angle AOQ = 90^{\circ}$ as OA is straight tower. $\angle AOP = 90^{\circ} = \angle AOR = \angle AOS$ Now Angle of elevation are α , β , γ and δ. In right angle \triangle AOP: And $\angle APO = \alpha$ $Tan\alpha = AO/OP$ $OP = AO \cot \alpha$ Similarly, in \triangle AOS:

Height and Distance

Tan
$$\delta$$
 = AO/OS
OS = OA cot δ
And OQ = AO cot β
And OR = AO cot γ
So, the value
 $\left(\frac{PQ}{(RS)^2}\right)^2 = \frac{\cot^2 \alpha + \cot^2 \beta}{\cot^2 \gamma + \cot^2 \delta}$
Sol 6. (a)
A
A
A
A
A
A
C
ACQ = 30°
From trigonometric property
AQ = 1 unit, AC = 2 unit and QC = $\sqrt{3}$
unit
In ΔBPC
 $\angle BCP = 60^{\circ}$
From trigonometric property
PC = 1 unit, BC = 2 unit and BP = $\sqrt{3}$
unit
QC = PC
........(Given)
Balancing the ratio for QC and PC
 $\Rightarrow PC = \sqrt{3}$ unit, $BC = 2\sqrt{3}$
unit and $BP = 3$ unit
Required ratio = AQ : BP
 $= 1: 3$

Sol 7. (c) From the figure:

60

 $16\sqrt{3}\sqrt{3}$

Р

 $2AQP=60, \angle QBC=\theta$ So, AP=16 $\sqrt{3} = 27.68$ Therefore, Height of tower = 27.68+12 = 39.68 m

Sol 8. (c) From the figure given below:

 $\angle AOS = 90^{\circ} \text{ and } \angle ASO = \delta$

Height and Distance

Therefore, The height of the top of the ladder from the base = 18m

Sol 9. (c) Let Ab be the wall and Ac be the ladder.

In the given triangle, $AB = 45\sqrt{3}$ AC=90 Therefore, Length of tree = $45\sqrt{3}+90 =$ 167.85 m Sol 14. (c) If the height and length of a shadow are equal. Then, the angle is 45. Sol.15 (b) In $\triangle ABC$, we know that For angle $C = 60^{\circ}$ $AB = \sqrt{3}$ unit and BC = 1 unit In $\triangle ABD$, we know that For angle $D = 45^{\circ}$ AB = 1 unit and BD = 1 unit Balancing the values for AB AB = $\sqrt{3}$ unit, BD = $\sqrt{3}$ unit and BC = 1 unit According to the question BD-BC = $\sqrt{3}$ -1 unit $\Rightarrow \sqrt{3} - 1$ unit = 15 1 unit = $\frac{15}{\sqrt{3}-1}$ Height of the tower (AB) = $\sqrt{3}$ unit = $\frac{15}{\sqrt{3}-1} \times \sqrt{3} = \frac{45+15\sqrt{3}}{2} = 35.49$ Sol 16. (a)

 $\frac{AC}{BC} = \tan 60$ $\frac{1000\sqrt{3}}{BC} = \sqrt{3}$ BC = 1000 $\frac{ED}{BD} = \tan 30$

 $\frac{1000\sqrt{3}}{BD} = \frac{1}{\sqrt{3}}$ BD = 3000 Distance covered by DC = BD-BC = 3000-1000 = 2000

Sol 17. (c) From figure, 1---- 2,7 Therefore, $\sqrt{3}$ ----- 2.7 × 1.73 = 4.68 m

Sol 18. (a) Let the height of the pole be h. ATQ: $\frac{h}{13.5} = \frac{5.4}{9}$ so, h = 8.1m

Sol.20.(d)

Pinnacle

Sol.21.(c)

$$Sin 30^{\circ} = \frac{BC}{AB} = \frac{1}{2}$$
$$\Rightarrow \frac{BC}{158} = \frac{1}{2}$$
$$\Rightarrow BC = 79$$

Sol.22.(c)

Distance travelled by the ship during the period of observation = $CD = BD - BC = 42(\sqrt{3}-1)$

2 unit = 10 unit $\sqrt{3}$ unit = $5\sqrt{3} = 5 \times 1.732 = 8.65$ m

From the figure we can clearly see that $\frac{x}{1425} = \frac{10}{30}$ (similarity of triangles) So the value of X will be 475 metres

Sol:27.(c)
If
$$\angle C = \theta^{\circ}$$
 And $\cos \theta = \frac{12}{13}$
A
b
B
C
If shadow = 18m
Then height = $\frac{18}{12} \times 5 = 7.5m$
Sol:28.(d)
If $\angle C = \theta^{\circ}$

And $\cos \theta = \frac{12}{13}$

Height and Distance

If shadow = 36m Then height = $\frac{36}{12} \times 5 = 15$ m

Difference in height = 7cm Difference in top = 25 cm By pythagoras theorem base = $\sqrt{25^2 - 7^2} = 24$ cm

Sol.30:(a)

Angle of elevation of A=30° Angle of elevation of B=60°

As we know $\tan \theta = \frac{height}{base}$

And the angle of elevation is drawn from the midpoint so base for both A and B is equal

So height of B: height of A= $tan60^\circ:tan30^\circ$

$$= \frac{\sqrt{3}}{\frac{1}{\sqrt{3}}} = 3:1$$

Sol.31:(d)

Applying $\cos 60^\circ = \frac{1}{2}$ in the triangle we can easily find out x =3.6 × 2=7.2

Sol.32:(c)

Given $\tan \theta = \frac{12}{5}$

height of the top of the ladder from the wall = 24m i.e AC=24

We have to find out the length of BC

So by applying $\tan \theta$ in the above right angled triangle 12 24

$$\frac{12}{5} = \frac{24}{BC}$$

So BC= 10 metres

Sol.33:(d)

Angle of elevation of A=30° Angle of elevation of B=45° <u>h</u>eight

As we know $\tan \theta =$ hase

And the angle of elevation is drawn from the midpoint so base for both A and B is equal

So height of A: height of $B = \tan 30^\circ$:tan 45°

$$= \frac{\frac{1}{\sqrt{3}}}{1} = \frac{1}{\sqrt{3}}$$

Sol.34 (a)

SSC CGL 2019 Tier 2

Sol:35. (a)

BC =
$$120\sqrt{3} \times (1/\sqrt{3}) = 120$$

CD = BD - BC = $360 - 120 = 240$ m

Sol:36.(a)

AB = 240 mtr.

$$\tan 60^{\circ} = \frac{240}{AC}$$
AC = 80 $\sqrt{3}$

$$\tan 30^{\circ} = \frac{AE}{ED}$$

$$\frac{1}{\sqrt{3}} = \frac{AE}{80\sqrt{3}}$$
AE = 80
DC = 160
DC - AE = 160 - 80 $\sqrt{3}$
DC - AE = 80(2 - $\sqrt{3}$)

Sol:37.(d)

Height of tower=AB=x CD=10m,BD=10+X In triangle ABC tan 45°=x/BC BC=X In triangle ABD tan 30°=AB/BD $1/\sqrt{3} = X/(X+10)$ $X=5(\sqrt{3}+1)m$

SSC CGL 2019 TIER I

height Sol 38. (d) sin 60° =

16

AC is the length of the thread attached. Now, in $\triangle ABC$

Sin
$$60^{\circ} = \frac{AB}{AC}$$

 $\Rightarrow \frac{\sqrt{3}}{2} = \frac{123}{AC}$
 $\Rightarrow AC = 82\sqrt{3}$

On Comparing the two triangles we find that

2 unit is equal to 22m Then, 1 unit is equal to 11 Therefore BC = 11m

